Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36749700

ABSTRACT

Novel Corynebacterium strains, 3BT and 7BT, were isolated from the oral cavities of young chicks of yellow-eyed penguins (hoiho), Megadyptes antipodes. A polyphasic taxonomic characterization of these strains revealed chemotaxonomic, biochemical and morphological features that are consistent with those of the genus Corynebacterium. The 16S rRNA gene sequence similarity values between the strains and their closest phylogenetic neighbour, Corynebacterium ciconiae CCUG 47525T were 99.07 %, values that are in line with their phylogenomic positions within the evolutionary radiation of the genus Corynebacterium. Digital DNA-DNA hybridization values and average nucleotide identities between the genome sequences of the two strains and related Corynebacterium species were well below the defined threshold values (70 and 95-96 %, respectively) for prokaryotic species delineation. The genome size of these strains varied between 2.45-2.46 Mb with G+C content 62.7-62.9 mol%. Strains 3BT and 7BT were Gram-stain positive bacilli that were able to grow in presence of 0-10 % (w/v) NaCl and at temperature ranging between 20-37 °C. The major fatty acids (>15 %) were C16 : 0 and C18 : 1 ω9c, and the mycolic acid profile included 32-36 carbon atoms. We propose that these strains represent a novel species, Corynebacterium megadyptis sp. nov. with 3BT (=DSM 111184T=NZRM 4755T) as the type strain. Phylogenomically, strains 3BT and 7BT belong to two lineages with subtle differences in MALDI-TOF spectra, chemotaxonomic profiles and phenotypic properties. The fatty acid profile of strain 3BT contains C18 : 0 as a predominant type (>15 %), which is a minor component in strain 7BT. Strain 7BT can oxidize N-acetyl-d-glucosamine, l-serine, α-hydroxy-butyric acid, l-malic acid, l-glutamic acid, bromo-succinic acid and l-lactic acid, characteristics not observed in strain 3BT. Therefore, we propose that these strains represent two subspecies, namely Corynebacterium megadyptis subsp. megadyptis subsp. nov. (type strain, 3BT=DSM 111184T=NZRM 4755T) and Corynebacterium megadyptis subsp. dunedinense subsp. nov. (type strain, 7BT=DSM 111183T=NZRM 4756T).


Subject(s)
Fatty Acids , Spheniscidae , Animals , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Corynebacterium , Nucleic Acid Hybridization
2.
J Wildl Dis ; 58(4): 836-846, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36136602

ABSTRACT

Coccidia infections in wild birds rarely cause clinical signs; however, disease and mortality can occur with predisposing environmental and host conditions. The Yellow-eyed Penguin (Megadyptes antipodes) is an endangered species endemic to New Zealand that has seen significant ongoing population decline. The aim of this study was to examine the host-pathogen dynamics of coccidian parasites in two wild populations of Yellow-eyed Penguin: the mainland (South Island) population and the sub-Antarctic (Enderby Island) population. There was weak evidence for a difference in the prevalence of the Eimeria sp. in birds from Enderby Island (76.6%; 36/47; 95% confidence interval [CI] 62.78-86.4%) and the South Island of New Zealand (58.54%; 24/41; 95% CI 43.37-72.24%). The mean pathogen load in penguins on Enderby Island was 9,723 oocysts/g of feces (SE=5831 oocysts/g) and from the South Island of New Zealand was 1,050 oocysts/g (SE=398 oocysts/g). No evidence of an association was found between pathogen load and body weight in either study population. The morphology of the sporulated coccidial oocysts was consistent with a novel species of Eimeria. There was statistically significant variation between the oocysts collected from the two sites in all measurements apart from the oocyst wall thickness. However, the standard technique of assessing linear regressions of the length and width of oocysts from both sampling sites was 0.80, and therefore above the standard R2>0.5 used to indicate variation within a single population of oocysts, suggesting that only a single species of Eimeria was present at both sampling locations. The prevalence and pathogen load of Eimeria sp. was substantially higher than previous reports of coccidial oocysts in Yellow-eyed Penguins and free-living Sphenisciformes globally. This host-parasite relationship deserves further investigation, as the impact of this novel organism on the population remains unclear.


Subject(s)
Eimeria , Spheniscidae , Animals , New Zealand/epidemiology , Antarctic Regions
3.
Biology (Basel) ; 11(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35741366

ABSTRACT

The endangered yellow-eyed penguin/hoiho (Megadyptes antipodes) predominantly forages benthically within its mainland range and shows high foraging site fidelity. Identifying consistencies in foraging locations can allow effective conservation, especially when managing bycatch risk. This study investigated the at-sea distribution of penguins breeding on Stewart Island to explore site-specific foraging strategies and inform fisheries management. During the 2020/21 season, 19 adult breeding yellow-eyed penguins from Port Pegasus, Paterson Inlet, and Codfish Island were fitted with GPS-TDR dive loggers to track their movements and diving behaviours. A total of 25,696 dives were recorded across 91 foraging trips. Birds from Port Pegasus reached significantly greater depths, spent longer at the seafloor, and performed longer dives. They also had the smallest foraging distribution, with most activity concentrated inshore. Compared to Port Pegasus, foraging radii and trip lengths were twice as large for Paterson Inlet and four times larger at Codfish Island. Despite differences in available foraging habitat, considerable individual and intra-site consistency for preferred foraging locations was observed. Localised behaviour and inter-site differences in dive metrics suggest significant plasticity in foraging ecology across their mainland range; however, individual behaviour and preferred foraging locations were extremely predictable. Thus, risk of mortality from fisheries can be quantified and managed accordingly.

4.
Mol Cell Endocrinol ; 549: 111642, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35395343

ABSTRACT

BACKGROUND: A supply of maternal thyroid hormone (thyroxine, T4) is essential for normal human fetal development. Human placental trophoblasts synthesize, secrete and take up the T4 binding protein transthyretin, providing a route for maternal T4 to enter the placenta. Transthyretin is also involved in T4 transport in other tissues such as the brain choroid plexus. Nicotine alters transthyretin synthesis and function in rat choroid plexus. If nicotine influences trophoblast turnover of transthyretin, then it may directly affect placental transfer of T4 to the developing fetus and contribute to the negative impacts of smoking on fetal growth, development and placental function. METHODS: The effect of nicotine on trophoblast uptake of Alexa-labelled transthyretin was measured using live cell imaging. The effect of nicotine on protein expression was measured by western blotting. Interactions between transthyretin, T4 and nicotine were investigated using chemical cross-linking techniques and molecular dynamic simulations. RESULTS: Nicotine blocks uptake of transthyretin-T4 by human placental trophoblast cells. Nicotine reduces the expression of the trophoblast scavenger receptor class B type 1 (SR-B1) that plays a role in transthyretin-T4 uptake. Molecular dynamic modelling suggests that when T4 is bound to transthyretin, nicotine binding increases tetramer stability, reducing the ability of the transthyretin-T4 complex to enter trophoblast cells. CONCLUSION: Our data suggest that nicotine exposure during pregnancy reduces transplacental transport of transthyretin and T4 to the placenta and developing fetus. This may contribute to the negative effects of smoking on fetal growth, development and pregnancy viability.


Subject(s)
Thyroxine , Trophoblasts , Animals , Female , Nicotine/pharmacology , Placenta/metabolism , Prealbumin/metabolism , Pregnancy , Rats , Smoking , Thyroxine/metabolism , Thyroxine/pharmacology , Trophoblasts/metabolism
5.
mSystems ; 6(3): e0032021, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34100641

ABSTRACT

Yellow-eyed penguins, Megadyptes antipodes, are an endangered species that are endemic to New Zealand. Outbreaks of diphtheritic stomatitis have caused significant mortality for this species, especially among young chicks. In this study, we isolated 16 Corynebacterium sp. isolates from the oral cavities of 2- to 14-day-old chicks at a range of infection stages and sequenced the genomes to understand their virulence mechanisms. Phylogenomic and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) characterization indicate that these strains belong to a novel Corynebacterium species. A simple multiplex PCR-based diagnostic assay has been developed to identify these strains rapidly and reliably. Similar to other corynebacteria, genomic islands and prophages introduced significant diversity among these strains that has potentially led to minor functional variations between the two lineages. Despite the presence of multiple corynebacterial virulence genes and a spaDEF-type pilus gene cluster among these strains, the survival rate was much higher in Galleria mellonella larvae than in those inoculated with Corynebacterium ulcerans NZRM 818 and Corynebacterium pseudotuberculosis NZRM 3004. Therefore, these strains are opportunistic pathogens causing high mortality among young penguin chicks due to a less-developed immune system. IMPORTANCE Yellow-eyed penguins, Megadyptes antipodes, are endangered species with a sharp decline in the numbers of breeding pairs over the last 2 decades. Diphtheritic stomatitis, characterized by a thick fibrinopurulent exudate in the oral cavities and symptoms, including inanition and significant weight loss, is responsible for significant mortality among the young chicks. These chicks are treated with antibiotics, amoxicillin-clavulanic acid or enrofloxacin, but do not always recover from the infection. The pathogen causing these infections and the mechanism of pathogenesis are unclear. This study has identified a novel Corynebacterium species to be associated with diphtheritic stomatitis in yellow-eyed penguins with potential virulence genes that are likely involved in pathogenesis. Importantly, a gene encoding an exotoxin, phospholipase D, is present among these strains. The inactivated form of this enzyme could potentially be used as an effective vaccine to protect these penguins from infection.

7.
Gigascience ; 8(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31531675

ABSTRACT

BACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.


Subject(s)
Genome , Spheniscidae/genetics , Animals , Evolution, Molecular , Phylogeny
8.
PeerJ ; 5: e2935, 2017.
Article in English | MEDLINE | ID: mdl-28265492

ABSTRACT

Longitudinal studies focusing on lifetime reproductive success (LRS) have been used to measure individual breeding performance and identify commonalities among successful breeders. By extending the focus to subsequent generations we identify a proportion of high-quality individuals that contribute disproportionately to the population over multiple generations. We used 23 years of yellow-eyed penguin (Megadyptes antipodes) breeding data from one breeding area to identify the proportion of individual birds that raised successful breeders, which in turn raised offspring. We explored which life-history components influenced LRS, as this knowledge would enable conservation resources to be focused on high-performing individuals in this endangered population. From 2,147 birds marked as chicks, 370 (17.2%) survived to adulthood and recruited to their natal location, of which 219 (10.2%) fledged offspring: 124 (56.6%) of the 219 birds produced offspring that recruited as breeders. Only 102 birds (4.8% of 2,147) fledged first-generation offspring that in turn fledged offspring (second-generation offspring, or grand-offspring). We found that ∼25% of the birds that survived to breed had above-average LRS as well as above-average numbers of grand-offspring, and were more likely to have produced first-generation chicks that recruited and also produced above-average numbers of second-generation chicks. Our findings suggest that there is a core of "super-breeders" that contribute disproportionately to the population over successive generations. Lifespan and age-at-first-breeding were correlated with LRS. We suggest that traits of birds relating to longevity, health (e.g., immunocompetence) and fitness could be examined to identify potential links with high LRS and inter-generational fecundity. "Super-breeders" appear to consistently achieve high LRS and long lifespans in a stochastic environment, demonstrating greater resilience in the face of extreme events.

9.
J Wildl Dis ; 53(1): 102-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27788054

ABSTRACT

Diphtheritic stomatitis is a seasonal disease that has been recognized as a syndrome in Yellow-eyed Penguin ( Megadyptes antipodes ) chicks in New Zealand for >10 yr. It was present in about 50% of 234 chicks examined since 2002 and is characterized by a thick serocellular exudate in the oral cavity of 1-4-wk-old chicks. The syndrome includes inanition, weight loss, and death in many affected birds. Microscopically, the lesions varied in severity. Most affected chicks had severe, locally extensive, ulcerative stomatitis with large amounts of exudate containing numerous bacteria; a smaller number had mild focal lesions with smaller amounts of exudate and bacteria. Although Corynebacterium amycolatum has been consistently isolated from the oral lesions, it was also present in the oral cavity of 34% of normal adult penguins and their chicks and is not known to possess diphtheritic toxins. A primary viral pathogen was therefore suspected, and intracytoplasmic inclusion bodies were occasionally seen in oral mucosal epithelial cells. No herpesvirus DNA was detected with PCR. Avipoxvirus DNA and an unidentified virus-like agent were detected in some early oral lesions, but could not be confirmed in subsequent testing. Electron microscopy on early affected epithelium with intracytoplasmic inclusion bodies was unrewarding. Our findings raise the possibility that the disease is caused by an unknown primary virus infection followed by secondary Corynebacterium invasion, but this requires confirmation. The means of transmission has not been established but insect vectors are suspected.


Subject(s)
Spheniscidae/virology , Stomatitis/veterinary , Animals , Animals, Newborn , Corynebacterium Infections/veterinary , New Zealand , Polymerase Chain Reaction , Spheniscidae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...